Appendix

Table 1. Nutrition and MeHg toxicity: epidemiologic data.

Population	n	Source of Hg	Hg exposure	Nutrient factor measured	Relationship	Ref
Northern Canada	432	Marine food	71 nmol Hg/L in cord blood plasma	Se in plasma (4.2 μmol/L); ω-3 fatty acids (4.5% of phospholipids in plasma)	Positive correlation between blood concentrations of Se and Hg; $\omega3$ fatty acids and Hg	(28
Northern Canada	448	Country food	100 ppb Hg in blood (16% of tests)	Eating habits (food consumption frequency and preferences)	Lake trout was a major contributor to Hg exposure; exposure may also be associated with a longer beluga harvest	(29
Northern Canada	NA	Country food	NA	Thiamine deficiency	Similarities exist between the symptoms of Hg and thiamine neurotoxicity; a concurrence of thiamine antagonists and Hg exposure in the diet	(30
Denmark	198	Environment	6.9 nmol Hg/L in blood	Serum Se, Ni, Cd, Al, Zn, Cu	Positive correlation between blood Se and Hg; correlation between Hg and fish intake	(31
Faroe Islands	1,023	Maternal sea- food diet	24.2 μg Hg/L in cord blood (25% of tests exceeded 40 μg/L); 4.5 mg Hg/g in maternal hair	Whale and fish dinners	Whale meat and frequent fish consumption were associated with high blood Hg; correlation between blood Se and Hg	(32
Finland	1,861	Fish	103 g fish/d	Intake of vitamin C, protein, ω -3 fatty acids, Se and salt and plasma antioxidants (α -tocopherol, γ -tocopherol, β -carotene)	Higher fish consumption was associated with higher Hg intake	(33)
Greenland	376	Country and marine food	14.9 µg Hg/L maternal blood; 21 µg Hg/L offspring blood	Number of meals of country food/wk	No effect of country food intake on gestational length or birth weight	(20
Greenland	138	Marine food	86–186 μg Hg/L in blood	Blood Se	No correlation between Se and Hg by individuals, but in groups according to eating habits	(34)
Greenland	1	Diet	NA	Country food and beluga maktak (intake not evaluated)	Man stopped eating traditional diet and began to show symptoms of Hg poisoning; symptoms disappeared after eating maktak again	(35)
Norway	32	Fish	18 μg Hg/d	Lipids, Se (115 μg Se/d)	Positive correlation of dietary Hg with LDL-choles- terol; negative correlation with HDL-cholesterol	(36)
Japan	NA	Fish	NA	Ethanol	Ethanol was several times more common among residents of MeHg-polluted areas	(37)
Japan	NA	Fish	NA	Ethanol	Mortality from liver cancer, chronic liver disease, and cirrhosis was higher in verifed Minamata disease patients	(38)
Japan	575	Environment	NA	Se	Expression of Hg values in relation to urine Se is a good index in younger subjects as creatinine concentration changes with age	(39)
Sweden	18	Dental amalgam	27 nmol Hg/L in plasma; 6.5 nmol Hg/mmol creatinine in urine	Nicotine chewing gum	Chewing gum increases the release rate of Hg vapor from amalgam fillings	(40)
Turkey	95	Dialysis	NA	Se	Subjects on hemodialysis are subject to more toxic elements than transplantation patients	(41)
Sweden	395	Fish	6.7 ng Hg/g whole blood (at least two fish meals/wk)	Plasma Se	Plasma Hg was associated with ω-3 fatty acids in phosphatidylcholine; both plasma Se and Hg are positively associated with fish intake	(42)
Sweden	30	Dental amalgam and fish	0.6 ng Hg/g breast milk; 2.3 ng Hg/g in blood; 0.28 µg Hg/g in hair 6 wk after delivery	Breast milk, fish intake	Blood Hg was positively correlated with number of amalgams and intake of fish; amalgam Hg was the main source of Hg in the milk	(43)
United States	52	Nonoccupational environmental exposure	1.05 ppm Hg in hair	Vitamin C supplementation	No effect of vitamin C on Hg body burden as measured by hair and blood Hg	(44)
Norway	49	Occupational exposure to Hg ⁰	NA	Se	Exposed group excreted more Se into urine; no significant correlation between Hg and Se excretion was found	(45)

Abbreviations: d, day, HDL, high-density lipoprotein; LDL, low-density lipoprotein; NA, not available; wk, week.

Table 2. Interactions between nutrients and Hg: foods and macronutrients.^a

Nutrient/nutrition factor	Proposed type of interaction	Ref.
Protective effects		
Cysteine	Stimulates de novo synthesis of CoASH, which then exerts protective effect	(68)
Cystine	Decreases Hg deposition in kidney	(69–71)
Fish protein	Decreases toxicity symptoms of MeHg, presumably due to its Se content	(70,72)
Garlic	Promotes Hg excretion due to -SH and -SS- radicals that promote formation of Hg-sulfur compounds	(73)
Glutathione	Forms low molecular weight conjugate with Hq that can be extracted into kidneys and catabolized	(74)
γ-Linolenic acid	Allows the bypass of blocked linoleic acid production that occurs due to MeHg displacement of Zn ions from rate- determining enzymes	(75)
Neutral amino acids (e.g., leucine)	Inhibit uptake of Hg in brain because of competition for the neutral amino acid transport carrier with Hg-Cys complex; leucine has a greater affinity for the carrier	(76)
Phospholipids	Prevent toxic effect of MeHg	(77)
Wheat bran	Decreased the retention of orally administered MeHg in mice due to modification of metabolic activity of gut microflora	(78)
Enhanced toxicity		
Alcohol	Causes additive effect with MeHg on kidney pathology; may inhibit reoxidation of Hg vapor; may stimulate absorption of metals from the intestinal mucosa	(80,81)
Chewing gum	Increases Hg release from dental amalgams through mechanical action	(40)
Cysteine	Increases brain uptake of MeHg and Hg ²⁺ in kidney by forming Cys-Hg complexes	(76,81,82)
Cystine	Increases brain MeHg	(69–71)
Glutamate	Interrupts transport by forming Hg-sulfide bridges between Cys and residues in protein; interactions result in neurotoxicity	(83)
Linoleic acid	May compete with Hg for the vitamin E antioxidant system and thus exacerbate the lethal effects of MeHg	(84)
Milk	Increases MeHg absorption from the intestinal tract; decreases fecal excretion; increases initial absorption due to binding of Hg to fatty acid from milk triglycerides	(85,86)
Protein	Low protein diet increases uptake of Hg in the brain because of involvement of neutral amino acid carrier; low protein diet may decrease urinary excretion of Hg; higher protein levels increase the susceptibility of the liver to Hg	(69,87–89)
Thiamine-related factors: high carbohydrate diet; intake of tea, raw fish; alcoholism	Clinical manifestation of thiamine deficiency may intensify clinical symptoms of Hg toxicity	(30,90)
Other effects		
Amino acids	Altered Hg uptake in kidney; renal uptake of Hg partially involves amino acid transport mechanisms acting on Ha—amino acid complexes	(91,92)
Cellulose	Alters metabolism of MeHg by intestinal flora	(78)
Glucose	Competes with Hg in use of the facilitated p-glucose transport system	(93)
Glutamine and glycylglycine	Serve as messengers in functional alterations in uptake of MeHg that occur through signaling pathways	(94)
Methionine	Increases brain MeHg; acts competively to inhibit Cys—Hg transport across the blood—brain barrier; Hg inhibits methionine synthase in brain because it is a sulfhydryl enzyme	(<i>94</i>) (<i>69,82,95</i>)
Phytate	No effect on absorption of Hq	(96)
Seleno-L-methionine	Minimal effect on Hg distribution in offspring	(<i>90</i>) (<i>97,98</i>)
Small aliphatic dicarboxylic acids (e.g., succinate)	Mechanism of Hg ²⁺ uptake in the proximal tubule involves the activity of the organic anion transporter; affects renal uptake of Hg	(99,100)
Thiol compounds	Increase brain, liver, and kidney MeHg; decrease plasma MeHg; alter chelation and excretion of Hg	(101–103)
Effects of Hg		
Albumin	Hg alters free albumin availability; albumin shows preferential interaction with hydrophobic domains of the mercurial ligand; mercaptoalbumin forms stable complex with MeHg in serum	(69,104)
Carbohydrate	Hg acts through the endocrine system creating hormone/enzyme imbalance in carbohydrate metabolism; induces anaerobic stress that causes switch to glycolysis	(93,105–107)
Linoleic acid	May compete with Hg for the vitamin E antioxidant system and thus exacerbate the lethal effects of MeHg; Hg may catalyze lipid peroxidation of linoleic acid	(84)
Lipids	Inhibition of carnitine acetyltransferase occurs when Hg binds to enzyme sulfhydryl groups; Hg reacts with double bonds of fatty acid residues in phospholipids (major component of biomembranes)	(108,109)
Lipids	Inhibitory effect on hepatic fatty acid synthetase activity is mediated through interaction of Hg with sulfhydryl groups of the enzymes; Hg promotes oxidation of lipids; fat composition of diet affects toxicokinetics of Hg	(110,111)
Sugars	Hg inhibition of sugar absorption is ascribed to impairment of the sugar—Na phlorizin-sensitive cotransport; interacts	(112,113)
Heimming	with ligands of the transport proteins in the luminal membrane of enterocytes	(1111)
Ubiquinol	MeHgCl induces alterations in electron transport in the ubiquinol–cytochrome c oxidoreductase region	(114)

Abbreviations: SH-, thiol; -SS-, oxidized thiol. ^aTable contains references to both inorganic and organic forms of Hg.

Table 3. Interactions between nutrients and $Hg: minerals.^a$

Nutrient/nutrition factor	Proposed type of interaction	Ref.
Protective effects Phosphate ions (with ATP)	Decreased severity of inhibition of protein synthesis by Hg	(93,100)
Selenium	Alters GSH and GSH enzyme metabolism; forms precipitate with Hg; protective of toxic effects of MeHg and HgCl ₂ ; protects kidneys by reducing their MeHg uptake (may be mechanism for protecting survival)	(115–123)
Zinc	Activates GSH-associated enzymes that thus increase GSH level in kidney; altered superoxide dismutase activity; reduction of oxidative stress; induces metallothionein and activities of enzymes (GSH peroxidase and G-6-P dehydrogenase) that inhibit lipid peroxidation	(124–126)
Enhanced toxicity		
lron ,	May increase lipid peroxidation by MeHg	(127-129)
Manganese ions	Mn exacerbated Hg damage to bigenic amines in the central nervous system; Hg altered superoxide dismutase activity	(126,127)
Other effects		
Calcium	Binding of inositol 1,4,5-triphosphate and 1,3,4,5-tetrakisphosphate to cellular membranes is inhibited by Hg	(130)
lodine	Increases gastrointestinal absorption of Hg	(131)
Effects of Hg		
Cations	Hg alters cation metabolism; related to renal toxicity and/or the synthesis of metallothionein in kidney	(132)
Chloride ion	Action by direct effect of Hg on epithelial cells and also mediated by prostaglandins and cholinergic and noncholinergic neurons	(133,134)
Cobalt	Fluctuates due to altered vitamin B ₁ and B ₁₂ metabolism by Hg	(127)
Copper	Hg affects superoxide dismutase activity	(126,135)
Iron	Fluctuates due to lipid peroxidation by MeHg	(127-129)
Magnesium	Mg levels are altered due to alteration in GSH metabolism by Hg	(127)
Potassium ions	Hg disrupts the function of Na+,K+-ATPase; Hg altered permeability through antiporters	(136,137)
Sodium ions	Hg disrupts the function of Na ⁺ ,K ⁺ -ATPase; Hg altered permeability through antiporters	(136,137)
Sulfur (sulfate, sulfite)	Hg reacts with sulfhydryl groups on proteins to form mercaptides; fluctuates due to altered vitamins B_1 and B_{12} metabolism by Hg	(103,134,138)
Trace metals	Fluctuate due to association of Hg with various macromolecules; Hg dissociates Cu and Zn from metallothionein	(127)

Abbreviations: ATP, adenosine triphosphate; G-6-P, glucose 6-phosphate. ^aTable contains references to both inorganic and organic forms of Hg.

Table 4. Interactions between nutrients and Hg: vitamins.^a

Nutrient/nutrition factor	Proposed type of interaction	Ref.
Protective effects Lipoic acid	Decreases biliary excretion of MeHg and increases the biliary excretion of HgCl ₂ ; protects against toxicity	(139,140)
Vitamin B complex Vitamin E	Aids in recovery of glycosidases injured by Hg; protects membrane and maintains cell stability during Hg toxicity Alleviates MeHgCl and HgCl $_2$ toxicity and neuronal degeneration; prevents lipid peroxidation due to Hg	(103,127) (127,141–145)
Enhanced toxicity		
β-carotene	Alters fatty composition and hepatic GSH concentration; alters antioxidant defense mechanisms against MeHg-induced lipid peroxidation	(144,145)
Folate	Deficiency enhances the development of symptoms of Hg toxicity	(147)
Vitamin A	Increases toxicity of MeHg in rat; interaction not clear	(148)
Vitamin B ₁₂	Increases MeHg uptake in liver	(95,147)
Vitamin B ₁ (thiamine) Vitamin C (ascorbate)	Deficiency enhances development of symptoms of Hg toxicity; possible ionic reaction similar to that with Cu and Cd Enhances Hg absorption from intestinal tract; reducing agent of Hg ⁰	(30,90,134) (134,149,150)
Other effects		
Vitamin D	Does not affect Hg uptake into tibia of chicks	(151)
Effects of Hg		
Biotin	Hg stimulates lipogenesis in biotin deficient state	(152)
Coenzyme A	Hg binds to CoA and interferes with CoASH function	(68)
NADPH	Hg forms a covalent complex with NADPH	(153)
Vitamin B ₁₂	Hg inhibits Met synthesis in brain	(95,147)

Abbreviations: NADPH, nicotinamide adenine dinucleiotide phosphate. ^aTable contains references to both inorganic and organic forms of Hg.

Table 5. Effects of food and nutrients on the absorption of MeHg.

Food/nutrient	MeHg exposure	Nutrient dose	Animal model	Duration of experiment	Effects	Ref.
Protective effects Dried algae (phosphorus)	Hg from algae grown on wastewater	Phosphorous in algae	Chicken	NA	Decreased absorption of Hg	(155)
Enhanced toxicity Fish meal	Hg in polluted fish meal 1.4 g Hg/kg diet vs with commercial fish meal 0.3 g Hg/kg diet	Experimental fish diet vs commercial fish diet	Rat	12 d	Absorption of Hg was greater from the experimental fish meal diet	(96)
Vitamin C	8 mg MeHgl/kg bw/d, orally	Ascorbic acid	Guinea pigs	5 d	Increased absorption of organic Hg	(150)
Other effects						
Corn silage	Hg from corn grown in industrial area 0.2 g Hg/kg diet	Corn silage vs casein diet	Rat	12 d	No effect on absorption of Hg	(96)
Diet (with sludge from sewage plant)	Hg from sludge 5.5 g/kg diet	Sludge diet vs casein control diet	Rat	12 d	No effect on absorption of Hg; ingested amount of Hg from sludge diet was higher	(96)
Phytate, fish meal diet	1.4 g Hg from fish meal/kg diet	Phytate 2 g/kg experimental fish meal diet compared with experimental fish meal diet	Rat	12 d	No reduction in the absorption of Hg	(96)
Selenium	Hg in hen liver (hens fed 15–30 ppm MeHgCl in diet)	Se in hen liver (hen fed 0.6 ppm selenite in diet)	Japanese guail	NA	No effect on the availability of Hg; Hg was highly available	(156)
Selenium	0–1.0 mM MeHgCl, intraduodenal dose, 0.05 mL	Selenite, intraduodenal dose 0.01 mM, 0.05 mL	Leghorn cockerel	3 wk	No interaction between Se and Hg; Hg level is manyfold excess of Se, suggests effect not of great nutritional importance	(98)
Selenium	0.5 µmol MeHgCl in 0.2 mL s.c. injection or 1.25–5 µmol, injected by gastric gavage, 5 mL/kg bw	0.5 µmol selenite alone or in combination	Rat	48 hr	No delay in absorption of MeHg by simultaneous selenite administration	(157)

Table 6. Effects on the metabolism and distribution of methyl mercury: foods and macronutrients.

Nutrient	MeHg exposure	Nutrient dose	Animal model	Duration of experiment	Effects	Ref.
Protective effects						
ADP	10 or 50 nmol MeHgCl/g bw (i.p. injection)	ADP, 250 μM, 1-hr incubation	Mouse, <i>in vitro</i> rabbit lysate translation system	12 hr	Decreased elevation of mitochondrial protein synthesis	(100)
Cysteine	1–100 μM MeHg, 24 hr	0.8 mg Cys/mL, 24 hr	In vitro mouse neuron culture	24 hr	Blocked neurotoxicity	(145)
Cysteine	5–50 μM MeHgCl	Cys, 12-min preincu- bation 0.2–2 mM	In vitro human placental syn- cytiotrophoblast	90 min	Partially blocked inhibition of carnitine acyltransferase	(108)
Cysteine	0.95 μg Hg/g shark muscle	Cys, 0.5%	<i>In vitro</i> shark muscle	1–24 hr	Decreased Hg concentration but efficiency was not high enough to make process efficient	(176)
Cystine Cystine	25 ppm MeHg in diet 15–25 ppm MeHgCl	0.4% cystine in diet 0.4% L-cystine in diet ad libitum	Rat Rat	10 wk 6–10 wk	Prevented increase in SGPT and SGOT levels Increased weight gain; slightly decreased kidney Hg; no effect on survival	(<i>177</i>) (<i>70</i>)
Cystine	in diet <i>ad libitum</i> 10 ppm MeHgCl in diet	0.3% cystine in diet	Japanese quail	16 wk	Improved egg production; no effect on survival	(71)
Fish protein	15–25 ppm MeHgCl in diet	10–20% fish protein in diet, <i>ad libitum</i> vs casein diet	Rat	6–10 wk	Improved weight gain and survival	(70)
Fish protein	Organic Hg, oral and parenteral dose (dose NA)	High fish protein vs low fish protein or caseinate diet	Mouse	NA	Reduced whole-body retention of Hg; oral dose increased liver deposition; no effect on relative organ distribution	(174)
γ-Linolenic acid	MeHgCl, 10 ^{–5} to 10 ^{–7} M	10 ^{–9} M γ-linolenic acid	<i>In vitro</i> human lymphocytes	72 hr	Reduced sister chromatid exchange	(75)
Garlic	4 ppm MeHgCl in drinking water	1.7–6.7% raw garlic in diet, p.o.	Rat	12 wk	Decreased brain, kidney levels of Hg; high level of garlic decreased severity of histologic damage	(73)
Glucose	MeHg-GSH 1 mmol MeHg/L packed erythrocytes	2 mM p-Glucose	<i>In vitro</i> rat erythrocytes	30 min	Inhibited MeHg uptake; MeHg uptake might use the passive D-glucose transport system	(93)
Glutathione	4 μM MeHgCl	0.6 mM GSH	<i>In vitro</i> rat hepato- cytes	240 min	Reduced cellular uptake of MeHg from medium	(74)
Glutathione	1 mg/kg/d or 10 mg MeHgCl (i.m. injection, 0–7 d)	100 or 150 mg GSH/kg bw/d (i.m. injection, 7–14 d)	Rat	15 d	Allowed recovery of cholesterol concentra- tion and duration-dependent recovery of triglyceride concentrations in areas of the CNS (cerebral hemisphere, cerebellum, medulla oblongata, spinal cord)	(102)
Glutathione	4 µmol MeHgCl/kg bw (single i.v. injection)	8 µmol Cys/kg bw (single i.v. injection pre-mixed with Hg)	Rat	4 hr	Increased uptake of Hg in kidney and decreased liver and blood content	(74)
High-protein diet	40 µmol/kg bw (injection)	24.8% protein diet	Mouse	16 d	Mice survived	(89)
Isoleucine	10 µmol MeHgCl (injection, with 100 µmol Cys/rat)	20 μmol ι-isoleucine, (i.v. injection)	Rat	2 hr	Isoleucine inhibited the effect of L-Cys on increased brain uptake of MeHg	(178)
Leucine	50 µmol MeHgCl/hr for 1 hr (at 24, 48, and 72 hr) (conti- nuous infusion to ex- ternal jugular vein)	0.1 mmol L-leucine/hr, (continuous infusion to external jugular vein) 4 d	Rat (pregnant)	92 hr	Inhibited brain uptake of Hg in nonpregnant rats; did not alter Hg distribution between pregnant or nonpregnant rats	(76)
Low molecular weight thiols	1–50 µmol MeHgCl (i.v. injection)	Low molecular weight thiols (i.v. injection, equi-molar, simultaneous)	Rat	60 min	Increased short-term accumulation of MeHg in liver, kidneys, cerebrum; decreased Hg in plasma	(101)
Marine mammal meat; Se	17.5 ppm MeHgCl in diet, in either sebas- tes or sperm whale meat	Marine mammal meat Se, 0.3–0.6 ppm in diet (either sebastes or sperm whale meat or sodium selenite)	Rat	12 wk	Sebastes meat protected growth (to an extent similar to selenite) and delayed neurologic signs (tail rotation, paralysis of hind limbs) for 7 wk (more protection than selenite); sperm whale meat was less effective; Se in organs was positively correlated with neurologic protection	(179)
Monothiols (glutathione, N-acetyl-DL- homocysteine thiolactone)	1 mg MeHgCl/kg bw/d (s.c. injection)	Monothiols (50 mg GSH/ kg bw and 40 mg <i>N</i> -acetyl- DL-homocysteine thiolac- tone/kg bw)	Mouse	15 d	α-gal and β-gal activities recovered toward normal in brain and spinal cord; GSH recovered α-gal in liver and testes and β-gal in kidney and testes	(180)

Table 6. Continued.

Nutrient	MeHg exposure	Nutrient dose	Animal model	Duration of experiment	Effects	Ref.
Monothiols (glutathione)	1 mg MeHgCl/kg/d for 7 d (s.c. injection)	50 mg GSH/kg s.c. injection (for 7 d) after	Mouse	14 d	Showed recovery of $\alpha\text{-}$ and $\beta\text{-}\text{glycosidases}$ activities enzymes in the CNS	(103)
Monothiols (glu- tathione, <i>N</i> - acetyl- _{DL} - homocysteine)	1 mg MeHg/kg bw/d (7 d) s.c. injection	the 7 d MeHg treatment 40 mg N-acetyl-DL-homo- cysteine thiolactone/kg bw, 50 mg GSH/kg bw for 7 d (8–14 d after Hg exposure)	Mouse	14 d	Mobilized Hg from all tissues except brain; decrease in Na, K, Mg, Mn, Cu, Zn, Cr, and Ni for most organs was restored toward normal, but recovery was not complete; decreased kidney Fe	(127)
<i>N</i> -acetyl- _{DL} - homocysteine	1 or 10 mg MeHgCl mg/kg bw/d (i.m. injection, 0–7 d)	40 or 80 mg N-acetyl-pt- homocysteine/kg bw/d or 80 mg/kg bw, i.m. injection, 7–14 d	Rat	15 d	Allowed recovery of cholesterol and duration- dependent recovery of triglycerides in the CNS (cerebral hemisphere, cerebellum, medulla oblongata, spinal cord)	(102)
Ringed seal liver	About 3% of Hg was organic; equiva- lent to about 0.25 mg Hg/kg bw/d	Ringed seal liver vs MeHg- supplemented beef liver	Cat	90 d	Seal liver group had no neurologic symptoms; cats fed MeHg-supplemented beef liver developed neurologic symptoms of toxicity (convulsions, hind limb weakness); elevated brain levels of Hg in supplemented beef liver group	(181)
Shark flesh	0.02–2.0 ppm in diet from shark flesh	0.01–0.46 ppm Se in diet from shark flesh	Rat	56 d	Increased GSH–peroxidase in brain and liver with Se supplementation up to 0.3 ppm; no effect on ornithine transcarbamylase activity; fish diet yielded higher GSH-peroxidase activities than yeast diet with equivalent Se as selenite	(182)
Soy protein	Organic Hg, oral and parenteral dose	High-soy protein vs caseinate or low-soy protein	Mouse	NA	Reduction in whole-body retention of Hg; relative organ distribution not affected; oral dose increased liver deposition	(174)
Succinate	10 or 50 nmol MeHgCl/g bw (single i.p. injection)	150 μM succinate,1 hr incubation	Mouse	12 hr	Decreased elevated mitochondrial protein synthesis	(100)
Sulfur amino acids in low protein diet	20 μmol MeHg/kg bw orally (24 hr before death)	7.5% protein diet vs 24.8% protein diet plus 0.03% cysteine in diet and 1.1% methionine in diet, 5 d	Mouse	5 d	Increased Hg uptake to brain and liver more than low-protein diet; increased urinary Hg over normal-protein diet; decreased Hg in kidney, blood, and plasma	(69)
Synthetic liquid diet (high pro- tein, low fat)	0.6 mg MeHgCl/kg bw, single dose, p.o.	Synthetic diet (high protein, low fat) <i>ad</i> <i>libitum</i> vs milk or pellet diet	Mouse	2 wk	Lowered Hg concentration in blood, brain, liver, kidneys; increased percent Hg ²⁺ compared to mice on milk diet or pellet rodent diet; Hg ²⁺ body burden was higher than rodent pellet diet; Hg burden of the gut was highest in the cecum	(88)
Tuna fish	MeHg (from tuna fish, 17% of diet)	17% tuna diet vs corn soya diet	Japanese quail	6 wk	Decreased MeHg toxicity and prolonged survival; decreased incoordination, mortality, growth inhibition	(183)
Wheat bran	5.0 mg Hg/kg bw (single dose, p.o., as MeHgCl)	5, 15, 30% wheat bran in diet compared to fiber-free diet	Mouse	104 d	Decreased Hg in blood, brain, small intestine with 30% diet; Hg elimination affected by dietary bran may reduce neurotoxic effects	(78)
Enhanced toxicity Cellulose	5.0 mg MeHgCl/kg bw, single dose, p.o.	5% cellulose in diet com- pared to fiber-free diet	Mouse	104 d	Increased Hg retention; did not alter percentage inorganic Hg	(78)
Chemically defined liquid diet	0.46 mg MeHgCl/kg bw, single dose, p.o.	GIBCO 116 EC <i>ad libitum</i> vs pellet rodent diet	Mouse	14 d	Organ Hg levels were increased	(85)
Coconut oil	5 μmol MeHgCl/kg bw (single oral dose after 3 wk)	Coconut oil, 5–50% of energy vs cod liver oil diet	Mice	5 wk	Increased whole-body, liver, and kidney retention of Hg; 50% diet decreased retention in liver and kidney	(111)
Cysteine	10 μmol MeHgCl,	100 µmol L-Cys, injection	Rat	1 hr	Increased brain uptake of MeHg	(178)
Cysteine	injection 4 μM MeHgCl	0.08-0.8 mmol Cys	<i>In vitro</i> rat hepatocytes	240 min	Increased cellular uptake of MeHg from medium	(74)
Cysteine	0.05 mM MeHgCl,	0.1 mmol L-Cys (simultan-	Rat	15 s	Increased brain Hg uptake	(82)
Cysteine	intracarotid injection 4 µmol MeHgCl/kg bw (single i.v. injection)	eous intracarotid injection) Cys, 8 µmol /kg bw (single i.v. injection premixed with Hg)	Rat	4 hr	Increased uptake of Hg in kidney but decreased liver and blood content	(74)

Table 6. Continued.

lutrient	MeHg exposure	Nutrient dose	Animal model	Duration of experiment	Effects	Ref.
Cysteine	50 µmol MeHgCl/hr for 1 hr (at 24, 48 and 72 hr), continuous infusion to external	0.1 mmol L-Cys/hr (continuous infusion to external jugular vein), 4 d	Rat (pregnant, 17 d, vs non- pregnant)	92 hr	Increased brain Hg in both types of rat; did not alter Hg distribution between pregnant and nonpregnant states	(76)
Cysteine	jugular vein MeHg–GSH, 1 mmol MeHg/L packed	Cysteine	Rat	30 min	Increased MeHg uptake; MeHg uptake might use the Cys-facilitated transport system	(93)
Ethanol Ethanol	erythrocytes MeHg (dose NA) MeHg (dose NA)	Ethanol (dose NA) Ethanol (dose NA)	Mouse Human	NA NA	Potentiated toxicity and mortality Associated with increased mortality from liver cancer, chronic liver disease, and	(184 (38)
Ethanol	1.5 mg MeHg/kg bw/d or 1.5 mg/d for 45 d (oral gavage)	2.0 g ethanol/kg bw/d, 45 d	Rat	NA	cirrhosis among Minamata disease patients Increased renal weight; caused oliguria and increased blood urea nitrogen levels; impaired kidney function; decreased glucose in urine	(185
Ethanol	5 mg MeHgCl/kg bw/d (10 consecutive days after d 7)	2.5–10% ethanol in drinking water	Rat	50 d	Increased mortality; potentiated neurologic manifestations; increased Hg in kidney and brain	(186
Ethanol	2.5 mg MeHgCl/kg bw (s.c. injection)	50% ethanol (s.c. injection, 0.1 mL/200 g bw)	Rat	44 d	Decreased body weight; increased severity of hindlimb ataxia	(187
Ethanol	0.5 mg MeHgCl/kg bw/d	8 g ethanol/kg bw/d, orally	Rat	14 wk	Decreased renal γ -glutamyltransferase; no effect on the distribution of MeHg and its inorganic metabolites or GSH in brain and kidney	(188
Ethanol	1–2.5 mg MeHgCI/kg bw in water	5.0 mL/kg bw of 25% ethanol	Rat	7 wk	Increased Hg in kidney but not brain and blood levels; lowered activity of apartate amino transferase and increased creatine phosphokinase; increased kidney pathology; no effect on percentage inorganic Hg; no effect on neurotoxicity (ataxia, tail rotation, convulsion)	(79)
Glutamate	0.5–10 μM MeHg	100 μM glutamate, 4 or 8 min	In vitro (mouse astrocytes)	60 min	Hg inhibited amino acid uptake in astrocytes	(189
Glutamate	0–10 μM MeHgCl	100 mM glutamate	In vitro mouse neo- nate astrocytes	14 min	Uptake of glutamate is inhibited in the presence of Ca ²⁺	(83)
High-protein diet	80 μmol MeHgCl/kg, injection	24.8% protein diet	Mouse	16 d	Killed mice within 16 d despite lower brain Hg than mice with a low-protein diet fed at a higher mercury dose; susceptibility to Hg was higher in normal-protein fed rats than low-protein-fed rats	(89)
High-protein diet	120 µmol MeHgCl/kg bw, injection	24.8% protein diet	Mouse	7 d	Killed mice within 7 d; plasma aspartate amino transferase and alanine amino trans- ferase were higher than in low-protein group	(89)
Linoleic acid	15 ppm MeHgCl, in diet	1–3% linoleic acid in diet (remainder of fat was lard)	Japanese quail	15 d	Increased mortality as percentage linoleic acid increased in birds not receiving linoleic acid diets from hatching	(84)
Low-protein diet	20 µmol MeHg/kg, bw, orally (on d 0)	7.5% protein diet vs 24.8% protein diet	Mouse	7d	Increased Hg in brain, kidney, blood, and plasma	(87)
Low-protein diet	80 µmol MeHg/kg bw, orally	7.5% protein diet	Mouse	16 d	All mice died within 16 d but died earlier than mice with low-protein diets	(89)
Low-protein diet	120 µmol MeHg/kg bw, orally	7.5% protein diet	Mouse	7 d	Killed mice within 7 d	(89)
Low-protein diet	20 μmol MeHg/kg bw, orally (24 hr before death)	7.5% protein diet vs 24.8% protein diet, 5 d	Mouse	5 d	Increased Hg uptake to brain compared to mice on normal protein diets	(69)
Methionine	MeHg-GSH, 1 mmol MeHg/L packed erythrocytes	DL-Met	Rat erythrocytes	30 min	Stimulated MeHg uptake	(93)
Methionine	4 μM MeHgCl	0.6 mM GSH	<i>In vitro</i> rat hepatocytes	240 min	Increased cellular uptake of MeHg from medium	(74)
Milk	0.6 mg MeHgCl/kg bw, single dose, p.o.)	Evaporated whole milk, ad libitum vs rodent pellet diet	Mouse	2 wk	Increased Hg body burden; decreased percentage Hg ²⁺ ; burden in gut was small intestine > cecum > colon; Hg retention in blood, brain, liver, kidneys was increased	(88)

Table 6. Continued.

Nutrient	MeHg exposure	Nutrient dose	Animal model	Duration of experiment	Effects	Ref.
Milk	0.46 mg MeHgCl/kg bw, single dose p.o.	Evaporated whole milk diet <i>ad libitum</i> vs pellet rodent diet	Mouse	14 d	Increased Hg in whole body, brain, kidney, liver	(85)
Pectin	5.0 mg Hg/kg bw, single dose as MeHqCl	5% pectin in diet compared to fiber-free diet	Mouse	104 d	Increased percentage inorganic Hg in liver and brain	(78)
Soya oil	5 μM MeHgCl/kg bw, single oral dose after 3 wk	Soya oil, 20% of energy	Mouse	5 wk	Increased carcass Hg compared to cod liver oil diet; did not affect Hg in liver; decreased kidney Hg	(111)
Other effects						
Aspartate	0.05 mM MeHgCl (intracarotid injection)	0.1 mM L-Cysteine-L-aspar- tic acid (simultaneous intracarotid injection)	Rat	15 sec	No effect on Hg uptake across the blood- brain barrier	(82)
ATP	MeHg-GSH 1 mmol MeHg/L centrifuged erythrocytes	ATP	Rat	30 min	No effect on MeHg uptake (tests the active transport system)	(93)
Cholesterol	5 × 10 ⁻⁴ M MeHgCl, in buffer	NA	In vitro	NA	No effect on the flux of Hg across lipid membrane	(190)
Cod liver oil	5 µmol MeHgCl/kg bw (single oral dose after 3 wk)	Cod liver oil, 5–50% of energy	Mice	5 wk	No effect on whole-body retention of Hg; Hg retention was lower than with coconut oil diet	(111)
Cysteine	0.5 mg mercury cysteinide/kg bw (i.v. injection)	0.5 mg mercury cysteinide/ kg bw (i.v. injection)	Mouse	14 d	No effect on distribution and excretion when compared to inorganic Hg	(191)
Cysteine	0.05 mM 0.5 mL MeHgCl (intracarotid injection)	0.1 mM p-Cys (simul- taneous intracarotid injection, 0.5 mL)	Rat	15 sec	No effect on the rate of MeHg uptake in brain	(82)
Fiber	MeHgCl, oral, dose NA	Cellulose, pectin, oat, corn soy fiber, dose NA	Mouse	NA	No effect on whole-body Hg retention	(174)
Glutamate	10 μmol MeHgCl (i.v. injection, with 100 μmol Cys, 2 mL)	L-Glu 200 µmol (i.v. injection, 2 mL)	Rat	2 hr	No effect on brain Hg content	(178)
Glycine	4 μM MeHgCl	NA	<i>In vitro</i> rat hepatocytes	240 min	No effect	(74)
Glycine	MeHg-GSH 1 mmol MeHg/L centrifuged erythrocytes	Glycine	Rat erythrocytes	30 min	No effect on MeHg uptake; system glycine is not involved in MeHg uptake	(93)
Histidine	4 μM MeHgCl, i.v. injection	NA	<i>In vitro</i> rat hepatocytes	240 min	No effect	(74)
Kynurenine	MeHg 0.1–10 μM, 10 min	30 μM kynurenine, 2 min	In vitro mouse astrocytes	60 min	Hg inhibited amino acid uptake in astrocytes	(189)
Lysine	10 μmol MeHgCl (i.v. injection, with 100 μmol Cys 2 mL)	200 μmol ι-Lysine, i.v. injection	Rat	2 hr	No effect on brain Hg content	(178)
Methionine	0.5–1.5 mg MeHgCl/kg bw/d oral gavage)	Met, 60, 100, 140% of sulfur amino acid requirement	Rat	5 wk	Serum thromboxane B ₂ was affected; Met deficiency caused increase in serum prostaglandin E ₁	(192)
Phenylalanine	10 µmol MeHgCl (i.v. injection, with 100 µmol Cys, 2 mL)	200 µmol L-Phenylalanine (i.v. injection)	Rat	2–12 hr	Phe inhibited the effect of L-Cys on increased brain uptake of MeHg	(178)
Seafood	121 nmol Hg/L in cord blood	Frequent whale meat dinners during pregnancy	Human	Birth cohort	Frequent ingestion of whale meat was associated with higher Hg in cord blood; blood Hg was correlated with blood Se	(32)
Soluble proteins	40 μM MeHgOH, aqueous	Soluble proteins 24 mg/mL protein, 1.4 mmol thiol groups, 1.5 mmol nonpro- tein thiol groups, in buffer	<i>In vitro</i> rat liver	1 hr	No effect on degradation of MeHg	(193)
Tannins	10-1,000 ppm Hg	Tree bark	In vitro		Tree barks were used in decontamination of industrial waste	(194)

Abbreviations: ADP, adenosine diphosphate; CNS, central nervous system; gal, galactosidase; i.m., intramuscular; i.p., intraperitoneal; i.v., intravenous; p.o., per os; s.c., subcutaneous, SGOT, serum glutamic-oxaloacetic transaminase; SGPT, serum glutamic-pyruvic transaminase.

Table 7. Effects of minerals on the metabolism and distribution of methyl mercury: minerals.

Nutrient	MeHg exposure	Nutrient dose	Animal model	Duration of experiment	Effects	Ref.
Protective effects Calcium ion	1×10^{-4} to 5×10^{-3} mg MeHg/L water	20–30 mg calcium/L	Algae	15 d	Inhibits MeHg toxicity; plays a more important role than Mg in the amelioration	(195)
Chloride	MeHg–GSH 1 mmol MeHg/L centrifuged erythrocytes	CI ⁻ , dose NA	<i>In vitro</i> , rat erythrocytes	30 min	of MeHg toxicity CI ⁻ inhibits MeHg uptake; uptake might use the CI ⁻ transport system	(93)
Copper	Hg, dose NA	Cu, dose NA	Rat	NA	Cu decreased whole-body retention of Hg by 50%; Cu decreased Hg:MT in the kidney	(133)
Magnesium ions	1×10^{-4} to 5×10^{-3} mg MeHg/L in water	20-30 mg/L magnesium in water	Algae	15 d	Had only a minor effect on severity of MeHg toxicity	(195)
Phosphate	1/3 of LD ₅₀ MeHgCl (single i.p. injection)	Pi buffer (i.p. injection, pretreatment)	Mouse	NA	Decreased severity of inhibition of protein synthesis and ATP synthesis	(196)
Phosphate	1 × 10 ⁻⁴ to 5 × 10 ⁻³ mg MeHg/L in water	20–30 mg/L phosphate	Algae	15 d	Ameliorated effect of MeHg, possibly due to effect on bioavailability; suggested that alkaline and hard eutropic waters might help protect fresh water organisms against heavy metal toxicity	(195)
Selenium	20 ppm MeHgCl in diet	8 ppm Se as selenite in diet	Chick	28 d	Decreased liver Hg; enhanced Hg depression of weight gain	(197)
Selenium	30 ppm MeHgCl in diet	Se, 0.4 ppm (type not mentioned) in diet	Cotournix quail	7 d	Se decreased elevated barbituate-induced sleeping time	(198)
Selenium	50 µmol MeHgCl/kg bw, p.o.	50 μmol selenite/kg bw, p.o.	Guinea pig	13 d	Se decreased concentration of Hg in major organs except brain; brain Hg was only lower after 7 d; organ and subcelluar distribution of Se was also altered to increase binding to insoluble nonhistone proteins	(199)
Selenium	15–30 ppm MeHgCl in diet	0.6 ppm selenite in diet	Hen	NA	At lower levels of Hg, less Hg is accumulated in liver and kidney	(156)
Selenium	4 μM MeHgCl	1, 3, 5 μM selenite	In vitro embryonic chicken neural retinal cells	24 hr	Provided protective effect on cell aggregation compared to MeHgCl alone	(200)
Selenium	$3 \times 10^{-6} \mathrm{M}$ MeHgCl	1×10^{-7} to 3×10^{-5} M selenite	<i>In vitro</i> human blood	72 hr	Prevented the induction of sister chromatid exchange dose dependently when added simultaneously to Hq	(117)
Selenium	18 μg Hg/g/d in fish diet	115 µg Se/g/d in fish diet	Human	NA	Decreased bleeding time	(36)
Selenium	5 nM MeHgCl	5 nM selenite	<i>In vitro</i> human blood	2 hr	Released MeHg from blood proteins	(201)
Selenium	1×10^{-5} M MeHgCl	0.8×10^{-5} M selenate or 0.2×10^{-5} M selenite	In vitro rat (cere- bellar tissues)	4 d	Both types of Se showed protection against toxicity	(202)
Selenium	5–15 ppm MeHgCl in diet, 7 d	1 ppm selenite in diet, 7 d	Japanese quail	9 d	Alleviated depression in weight gain and feed consumption; Se concentration in blood increased, but GSH—peroxidase activity in blood was not altered, suggesting that the Se remained unavailable	(203)
Selenium	20 ppm MeHgCl in corn oil	5 ppm selenite in water	Japanese quail	9 wk	Decreased percent mortality close to control; brain contained up to 40 ppm MeHg, but no symptoms of mortality occurred; increased Hg retention in liver, kidney, brain, eggs	(119)
Selenium	30 ppm MeHgC in diet	0.6 ppm selenite in diet	Japanese quail	28–34 d	Protected toxicity (altered hematocrit, decreased bond calcification, survival rate)	(204)
Selenium	5–30 ppm MeHgCl in diet	0.35–6 ppm selenite in diet	Japanese quail	20 wk	Survival increased with increasing Se in diet; lessened effects on egg hatchability, fertility, and production; Se alone resulted in toxic effects	(205)
Selenium	20 ppm MeHg in water	0.35–6 ppm selenite in diet	Japanese quail	67 d	Increased survival rate from 0 to 33% with 3 ppm Se	(206)
Selenium Selenium	25 ppm MeHgCl in diet 32 ppm MeHgCl in diet	1 ppm selenite in diet 0.6 ppm Se in diet, 5 wk	Japanese quail Japanese quail	15 d 24 d	Protected mortality Prevented decrease SGOT levels in severe Hg toxicity; did not affect SGPT levels	(84) (207)
Selenium	10 ppm MeHg in diet	0.6 ppm selenite in diet	Japanese quail	18 wk	Protected survival; effect was dose-depen- dent; protection extended from parents to offspring	(208)
Selenium	0.075–20 ppm MeHg from tuna or 0.075–20 ppm MeHgOH in diet	0.23–0.67 ppm Se from 17% tuna in diet	Japanese quail	6 wk	Decreased Hg intoxication; increased retention of Hg and Se	(55)
Selenium	10 ppm MeHgCl in diet	6 ppm selenium in diet	Japanese quail	16 wk	Prolonged survival time, improved egg production, improved fertility	(71)
	3101					Continue

Table 7. Continued.

Nutrient	MeHg exposure	Nutrient dose	Animal model	Duration of experiment	Effects	Ref
Selenium	15, 30 ppm MeHg in diet	Selenite, 0.6 ppm in diet	Leghorn hen	35 d	Prevented rapid weight loss, improved egg laying and incidence of shell defects; prevented increased kidney weight by Hg; prevented change in SGOT; prevented	(177)
Selenium	10 ppm MeHgCl in diet	Se, 10 ppm in diet	Mallard	10 wk	increase in transaminase levels Combined treatment alleviated Hg-induced decreased activity for liver GSH peroxidase, brain G-6-PDH and liver GSSG. Plasma glu- cose was slightly increased and hematocrit was slightly decreased; increased Se reten- tion in brain but decreased Hg retention in brain; increased Se uptake in liver	(209)
Selenium	10 ppm MeHgCl in diet	Sel-Met,10 ppm or 10 ppm Se in diet	Mallard	73 d	Prevented paralysis of the legs, but combina- tion of Se and MeHG decreased reproduc- tive stress over either alone, increased teratogenicity, and increased Se in tissues	(210)
Selenium	20 nmol MeHgCl/g bw, single injection on 6 consecutive d	10 nmol selenite,/g bw, simultaneous with or 30 min prior to MeHg, single injection (control dietary Se = 0.5 µg/g)	Mouse (Se deficient)	7 d	Reduced the MeHg-induced decrease in glutathione-S-transferase	(120)
Selenium	8 μC MeHg in lake water/vessel, dose NA	1–100 μg Se/L as selenite	Northern Pike	3–12 d	Reduced Hg contamination at low Se concentrations	(211)
Selenium	102 ng MeHg/d dry weight sediment	Se, 1.45 vs 0.28 mg/kg dry weight sediment or 0.5— 50 mg Se/kg dry sediment as sodium selenite	Oligochaete worm	14 d	Higher doses of Se decreased MeHg uptake (25–86% reduction)	(212)
Selenium	7 mg MeHg/kg bw, single oral dose at 5 wk	0.03–5 ppm selenite (6–7 wk in diet	Pig	7 wk	Protected histologic signs of toxicity; decreased Hg in muscle, cerebrum, heart, liver,kidney, and blood; MeHg decreased Se in blood, liver, kidney, and muscle; clinical Se deficiency developed	(213)
Selenium	MeHg, dose NA	7.5 µM selenite or sele-	Rainbow trout		Increased uptake of MeHg across the gills	(214)
Selenium	15–25 ppm MeHgCl	nate (perfusion medium) Selenite, 0.6 ppm in diet ad libitum	Rat	6–10 wk	Improved weight gain and survival; slightly decreased kidney Hg	(70)
Selenium	1 μmol MeHgCl/kg bw, i.v. injection	5 μmol sodium selenite/ kg bw, i.v. injection	Rat	5–60 min	Increased cerebral MeHg, decreased kidney MeHg (up to 60 min after treatment); lowered blood methyl mercury; did not alter binding of MeHg to GSH	(215)
Selenium	MeHg as panogen-42 (MeHg dicyandiamide) 25 ppm in diet	3 ppm selenite, in diet	Rat	4 wk	Enhanced liver and kidney organ accumulation of both Hg and Se when diets contain both but decreased Se retention; had beneficial effect on body weight and food consumption	(216)
Selenium	20 ppm MeHgCl in diet	3 ppm selenite in water	Rat	61 d	Protective effect was observed for growth and morbidity; Hg increased the accumu- lation of Se in organs (8-fold in kidneys)	(157)
Selenium	20 ppm MeHgCl in diet	0.5–1.5 ppm selenite or Se from tuna in diet	Rat	70 d	Both types of Se showed protection of survival rate, morbidity, and growth rate; tuna was half as effective as selenite in preventing neurologic manifestations; no correlation between Hg in brain and neurologic manifestations in groups with Se	(72)
Selenium	2.0 mg MeHgCl/kg bw/d, i.p. injection	2.0 mg sodium selenite/kg bw/d, i.p. injection	Rat	8 wk	Prevented crossing reflex of hind limbs, ataxicgait, weight loss, and reduction in glutathione peroxidase activity after 6 wk	(217)
Selenium	0.01 mmol MeHgCl/kg bw, s.c. injection	0.01 mol sodium selenite/ kg bw, s.c. injection, 30 min before injection of Hg	Rat	1 hr	Increased Hg in blood, testes, brain; decreased Hg in kidney; did not affect liver, spleen, heart, or plasma	(122)
Selenium	10 mg MeHgCl/kg bw/d orally (for 8–10 d)	0.5 mg selenite/kg bw, s.c. injection daily at same time as Hg	Rat	15–17 d	Delayed weight loss and delayed onset of signs of neurotoxicity; accelerated accumula- tion of Hg in brain but shortened its retention	(218)
Selenium	20 μmol MeHgCl/kg, bw, i.p. injection	20 µmol selenite/kg bw (1 hr before or after Hg)	Rat	2 hr	Decreased Hg in liver and kidney and increased it in brain; increased benzene extractable Hg, which was present as bis(methylmercuric) selenide	(219)
Selenium	MeHgCl in diet,	Selenite	Rat		Showed protection against neurotoxicity	(220)

Table 7. Continued.

Nutrient	MeHg exposure	Nutrient dose	Animal model	Duration of experiment	Effects	Ref.
Selenium	0-40 ppm MeHgCl in diet	5 ppm selenite in diet	Rat	74 d	Protected weight gain at high MeHg, increased Hg in liver but decreased Hg- induced reduction in liver size and enlarge- ment of kidney	(221)
Selenium	Bis(methylmercuric) selenide, dose NA	Se, dose NA			Less inhibition of glucose-6-phosphate dehy- drogenase, catalase, and trypsin	(222)
Selenium	8 µC MeHg in lake water/vessel, dose NA	1–100 μg Se/L as selenite	White sucker	3–12 d	Reduced Hg contamination at low Se concentrations	(211)
Selenium	8 μC MeHg in lake water/vessel, dose NA	1–100 μg Se/L as selenite	Yellow Perch	3–12 d	Reduced Hg contamination at low Se concentrations	(211)
Selenium	10 nmol MeHg/g feed	8-50 nmol selenite/mL drinking water	Mouse	1–2 wk	Restored decrease in membrane fragility	(223)
Selenium	10–1,000 ppm MeHgCl, in diet	2–8 ppm sodium selenite in diet	Mouse	45 d	Protected damage at all doses; induced enzymes at high levels (100 ppm MeHg, 2–8 ppm Se) in liver and kidney; modified enzymes of GSH metabolism; suggests observations are a mixture of toxicity and repair	(224)
Selenium	1–100 μM MeHgCl	10–80 μM selenium	In vitro cerebral mouse neurons	1–24 hr	Blocked toxicity	(145)
Selenium Zinc	25 ppm MeHg in diet 10 μM MeHgl	0.6 ppm selenite 100 µM ZnSO ₄ , 24-hr pretreatment	Rat In vitro (rat astrocytes)	10 wk	Prevented increase in SGPT and SGOT levels Increased MT protein levels and mRNA levels; provided resistance to MeHg-induced swelling; attenuated increased Na ⁺ uptake and K ⁺ release due to MeHg	(177) (225)
Enhanced toxicity Halogens (CI, nitrate, sulfate, phosphate, carbonate), sodium bromide, sodium iodide	100 μg Hg/L in water as MeHgCl	10^{-2} to $10^5~\mu M$ halogens	Fish (<i>Oryzias latipes</i>)	1–4 d	CI ⁻ significantly decreased hatchability of fish eggs; calcium chloride enhanced MeHg toxicity when present simultaneously; halides decreased survival time; chlorides reduced Hg content of whole embryos	(226)
Selenium	3 mg MeHgCl/kg bw, p.o., every 2nd d for 3 wk (10 doses)	Equimolar selenite	Guinea pig	28 d	Se decreased excretion of Hg in feces (2-fold) and in urine (7-fold); Se made a two-compartment model the best fit with half-lives for Hg of 8.7 and 40.8 d	(227)
Selenium	$1 \times 10^{-5} \mathrm{M}$ MeHgCl	Selenate, 4×10^{-5} M and selenite, 1×10^{-5} M	In vitro rat (cere- bellar tissues)	4 d	Enhanced toxicity	(202)
Selenium Selenium	20 ppm MeHgCl in diet 10 μg MeHgCl/g in diet	8 ppm Se in diet as selenite 2.5–10 µg sodium selenite/ g diet	Japanese quail Japanese quail	25 d 21 d	Increased liver Hg; no effect on weight gain Increased hepatic Hg levels; no change in hepatic GSH and GSSG; GSH transferase isozyme activities were modified; thiol- transferase and GSH—peroxidase activity were stimulated	(197) (228)
Selenium	15, 25, 35 µmol MeHgCl/kg bw/d on d 13, 14, and 15 of pregnancy (s.c. dose)	0.1, 0.2, 0.4 mg Se/kg diet as selenite, 5–7 wk	Mouse	8–10 wk	0.1 ppm Se in diet was enough to protect against fetolethality at 25 µmol/kg/d MeHgCl; GSH–peroxidase activity in mother was not affected; GSH–peroxidase activity in fetal liver was decreased and Se was increased, suggesting a decrease in Se bioavailability; Se supplementation increased Se in fetal liver	(229)
Other effects Calcium ion	1 mmol MeHg/L as MeHg–GSH	Ca ²⁺ , dose NA	<i>In vitro</i> rat erythrocytes	30 min	No effect of Ca ²⁺ -free buffer on MeHg uptake; Ca ⁺⁺ role may be via ATPase or gignal transduction.	(93)
Chloride ion	.5 µM MeHgCl in buffer	1-500 mM NaCl	In vitro	NA	signal transduction Alters permeability of Hg across lipid membranes; suggests that Hg crosses the membrane in a neutral form	(190)
Magnesium ions	1 mmol MeHg/L as MeHg–GSH	Mg ²⁺ (dose NA)	Rat erythrocytes	30 min	membrane in a neutral form Mg ²⁺ -free buffer had no effect on MeHg uptake; Mg ²⁺ does not likely play an important role	(93)
Phosphate	1/3 of LD ₅₀ MeHgCl, single i.p. injection	Pi buffer, i.p. injection posttreatment	Mouse		Pi treatment was less effective in correcting already induced metabolic disorders	(196)
Potassium ions	0–1,000 μM MeHgCl	K+	<i>In vitro,</i> rat astrocytes	30 min	MeHg inhibited uptake of Rb, a tracer for K ⁺	(230)
Selenium	Environmental, ocean	Se, environmental	Bowhead whale	NA	Positive correlation between Hg and Se; Hg:Se ratio was 1:40	(231)
					9	Continue

Table 7. Continued.

Nutrient	MeHg exposure	Nutrient dose	Animal model	Duration of experiment	Effects	Ref.
Selenium	13 ppm phenyl Hg in seed	Se, dose NA	Chicken eggs	2 mo	MeHg was identified in the eggs, I-Hg was predominant in the yolk; Se level was higher than in normal eggs	(232)
Selenium Selenium	MeHg, dose NA MeHg, dose NA	Selenite, dose NA Selenite, selenomethionine, dose NA	Fetus Goldfish		MeHg increased the toxicity of selenite NA	(233) (234)
Selenium	0.3-0.9 nmol Hg/g wet weight	8.8–15.8 nmol Se/g	Human kidney	NA	Hg:Se in kidney is consistent with 1:1 ratio	(235)
Selenium	Hg, dose NA	Se and selenoprotein P, dose NA	In vitro		Hg—Se complex binds Seleno-protein P, but not Hg ²⁺	(236)
Selenium	10 nM MeHgCl	10 nM selenite	<i>In vitro</i> rabbit blood	30 min	Formation of bis(MeHg) selenide with the participation of GSH; MeHg transferred to	(237)
Selenium	10 μM MeHgCl	2.5 μM selenite	In vitro rat organs	30 min	the benzene fraction with molar ratio of 2:1 Shows sulfhydryl groups of proteins and non-proteins are involved in interaction between protein-bound MeHg and selenite (GSH in liver and brain), Cys (in kidney); Cys in kidney may just be a breakdown product of GSH	(238)
Selenium	50 nM MeHgCl	50 nM selenite	In vitro rat blood	2 hr	Dereased Hg binding to egg albumin and to erythrocytes	(201)
Selenium	5–15 ppm MeHgCl, 7 d in diet	1 ppm selenite in diet, 7 d	Japanese quail	7 d	Se had no effect on Hg in kidney or brain but increased Hg in liver; Hg did not affect the level of Se in kidney, liver, or brain, but increased Se in the blood	(239)
Selenium Selenium	10 ppm MeHgCl in diet 0–1.0 mM MeHgCl, intraduodenal dose	0.3% selenite 0.01 mM Se as Se–Met, intraduodenal dose	Japanese quail Leghorn cockerels	16 wk 3 wk	No affect on survival of MeHg-fed quail Lack of interaction between Se and Hg; note Hg level is manyfold excess of Se; suggests effect not of great nutritional importance	(71) (98)
Selenium	0–1.0 mM MeHgCl, intraduodenal dose	0.01 mM selenite, intraduodenal dose	Leghorn cockerel	3 wk	No affect on selenite absorption, lack of interaction between Se and Hg; since Hg level is many fold excess of Se effect not of great nutritional importance	(98)
Selenium	10 nmol MeHg/g feed	0, 8, 20, 50 nmol selenite/ mL drinking water	Mice		Selenite increased Hg in brain and liver, but decreased it in blood, kidneys, and spleen	(223)
Selenium	100 μg MeHgCl, s.c.	69 µg selenite, i.v. injection 1 wk after Hg	Mice	1 wk	Increased free MeHg in blood, liver and kidney, but not brain	(201)
Selenium	15, 25, 35 µM MeHgCl/ kg bw/d, s.c. injection, to dams on d 13,14, and 15 of pregnancy	Se deficiency	Mouse	8–10 wk toxicity	Se deficiency exacerbated MeHg fetal lethal	(229)
Selenium	Bis(methylmercuric) selenide, i.v. injection, dose NA	Se, dose NA	Mouse		Decreased Hg retention in brain	(240)
Selenium Selenium	MeHg, dose NA 1 nmol MeHgCl/mL in drinking water during pregnancy	Se, dose NA 3 µg Se–Met/mL in drinking water	Mouse Mouse (pregnant)	60 d	Decreased Hg retention in brain Increased Hg in offspring, decreased kidney Hg deposition in offspring	(240) (97)
Selenium	20 mg MeHgCl/L ' in drinking water every second d	2 mg selenite/L in drinking water every second d	Rat	95 d	Increased mercury staining in cerebral cortex, thalamus, hypothalamus, brain stem nuclei, Purkinje cells, and white matter; increased Hg in nuclei of neurons; delayed functional toxicity (crossing of hind limbs, ataxia); did not delay malnourishment	(241)
Selenium	0.5 µmol MeHgCl, 0.2 mL, s.c. injection, or 1.25–5 µmol, injected by gastric gavage, 5 mL/kg bw	0.5 µmol, 0.2 mL, s.c. injection, selenite alone or in combination with MeHgCl	Rat	48 hr	Increased retention of Se but did not affect blood levels; retention was time dependent	(157)
Selenium	1–38 µmol MeHgCl/kg bw, i.p. injection	0.25–10 µmol selenite/kg bw i.p. injection	Rat	72 hr	Concurrent, equimolar injections protected slight decrease in GSH-peroxidase activity in brain; increased brain Hg uptake but did not alter Hg distribution	(242)
Selenium	0.01 mmol MeHgCl/kg bw	0.01 mmol selenite/kg bw	Rat		NA	(122)
Selenium	9 μmol MeHg/kg bw, oral intubation	Selenite 3–9 µmol/kg bw	Rat	16 hr	Hg was increased in all organs except kidney where Hg was decreased; effectiveness was Se–Met > Se–Cys > selenate > selenite	(243)

NUTRITION AND METHYL MERCURY EXPOSURE

Table 7. Continued.

Nutrient	MeHg exposure	Nutrient dose	Animal model	Duration of experiment	Effects	Ref.
Selenium	Organic, inorganic Hg, dose NA	Se, dose NA	Rat	NA	NA	(244)
Selenium	MeHgCl injection, dose NA	Selenite injection, simultaneous, dose NA	Rat	NA	Gel chromatography of plasma showed that proteins derived from a pronase E digestion did not contain Hg and only low Se; the Hg—Se-rich fraction did not contain protein, but gel chromatography of serum showed that proteins derived from a pronase E digestion contained high Hg and Se; properties suggest a mercuric selenide colloid	(245)
Selenium	0.5 µmol MeHg, 5 mL	0.5 µmol selenite, 5 mL	Rat	7 d	Temporarily increases the concentration of MeHg in the brain; temporal separation of Hg and Se exposure alters MeHg distribution	(246)
Selenium	MeHg, dose NA	Selenite, dose NA	Rat		No significant effect on GSH–peroxidase activity in liver	(247)
Selenium	Hg in pike or trout 1:6 Hg:Se	3.4 mg Se–Met/kg fish meal	Rat		Se–Met increased both Hg ²⁺ and MeHg in the blood	(248)
Selenium	Hg in Northern Pike or rainbow trout 1:6 Hg:Se	3.4 mg selenium dioxide/kg fish meal	Rat		Se decreased both inorganic Hg and MeHg in the blood and liver in rats fed Northern Pike	(248)
Selenium	16.6 μM MeHgCl	8.3 μM selenite	NA	10 min	Formation of bis(MeHg) selenide in benzene- soluble fraction	(249)
Sodium ions	MeHg-GSH 1 mmol MeHg/L centrifuged erythrocytes	Na ⁺ , dose NA	Rat erythrocytes	30 min	Na ⁺ -free buffer stimulated MeHg uptake; suggests a Na ⁺ -dependent transport system exists for MeHg uptake	(93)
Zinc	Organic, inorganic Hg, dose NA	Zn, dose NA	Rat		3.7	(244)
Zinc	Hg, dose NA	Zn, dose NA	Rat		Zn slightly decreased whole-body retention of Hq; decreased Hq:MT in the kidney	(135)
Zinc	1×10^{-4} to 5×10^{-3} mg MeHg/L water	Zn, dose NA	Algae	15 d	NA	(195)

Abbreviations: GSSG, oxidized GSH; MeHgCl, methyl mercury chloride; MeHgOH, methyl mercury hydroxide; Se-Met, seleno-L-methionine.

Table 8. Effects on the metabolism and distribution of methyl mercury: vitamins and phytochemicals.

lutrient	MeHg exposure	Nutrient dose	Animal model	Duration of experiment	Effects	Ref.
rotective effects Pantothine	80 ng Hg/mL as MeHgCl in tank water	10 μg pantothine/mL water in tank	Goldfish	24 hr	Decreased MeHg uptake by fish	(250)
Coenzyme A	80 ng Hg/mL as MeHgCl in tank water	0.6 μg coenzyme-A/mL water	r Goldfish	24 hr	Protected fish against MeHg uptake	(250)
Vitamin B ₁₂	1 mg MeHgCl/kg bw/d, 7 d, s.c. injection	2 mg/kg bw, s.c. injection for 7 d after 7-d MeHg treatment	Mouse	14 d	α- and β-Glycosidase activities recovered in brain, spinal cord; inhibition of liver and kidney enzyme activities enhanced	(103)
Vitamin B ₁₂	1 mg MeHgCl/kg bw/d, d 0–7, s.c. injection	2 mg vitamin B ₁₂ /kg bw/d, d 7–14, s.c. injection	Mouse	15 d	α -gal and β -gal activities recovered toward normal in brain and spinal cord; spinal cord had maximum recovery of β -gal; β -gal recovered in kidney and testes; α -gal recovered in kidney	(180)
Vitamin C	1 mg MeHgCl/kg bw/d, 7 d, s.c. injection	5 mg vitamin C/kg bw, s.c. injection for 7 d after 7-d MeHg treatment	Mouse	14 d	α- and β-Glycosidases activities recovered in brain, spinal cord; vitamin C showed maximum α-gal activity compared to other vitamins; inhibition of liver and kidney enzyme activies was enhanced	(103)
Vitamin C	1 mg MeHgCl/kg bw/d, d 0–7, s.c. injection	5 mg vitamin C/kg bw/d, d 7–14, s.c. injection	Mouse	15 d	α -gal and β-gal activities recovered toward normal in brain and spinal cord; β-gal recovered in kidney and testes; α -gal recovered in kidney but not in liver and testes	(180)
Vitamin E	10 ^{–5} M MeHgCl in buffer	$0.4-2.0 \times 10^{-5} \mathrm{M}$ DL- α - tocopherol acetate	In vitro rat (cere- brallar tissues)	4 d	Inhibited toxic effect of MeHg on development- of nerve fibers, glial cells, and fibroblasts	(144)
Vitamin E	10–40 mg MeHgCI/L in drinking water	10, 100 or 1,000 mg α-tocopherol/kg in diet	Mouse	2 wk	High tocopherol in diet protected against MeHg-induced lipid peroxidation in liver; deficient diet enhanced MeHg-induced lipid peroxidation; protected GSH-peroxidase activity	(146)
Vitamin E	4 μM MeHgCl	5, 7, and 10 μM DL-α- tocopherol acetate	In vitro embryonic neural retinal cells	24 hr	Provided protective effect on cell aggrega- tion compared to MeHgCl alone; less effect than Se	(200)
Vitamin E	15 ppm MeHgCl in diet	0.05% all rac-α-tocopherol acetate in diet	Japanese quail	22 d –29 d	Protected against Hg-induced mortality	(142)
Vitamin E	30 ppm MeHgCl, in diet	500–1,000 IU vitamin E, in diet	Japanese quail	28–34 d	Protective effect was eventually overcome by toxic effect of Hg	(204)
Vitamin E	10–30 ppm MeHgCl, in drinking water	50–500 ppm vitamin E, in diet	Rat	6–13 wk	Fewer signs of toxicity and greater growth and survival over Hg alone	(252)
Vitamin E	20 mg MeHgCl/kg bw	2.0 ppm DL- α -tocopherol acetate/d, s.c. injection, 4 wk	Golden hamster	4 wk	Prevented signs of ill health: ataxia and paralysis of hind limbs as well as extensive lesions in cerebellum, loss of granule celles, glial fibers, necrosis, and active phagocytosis of debris	(143)
Vitamin E	2 ppm MeHg/d, injection type NA	2 ppm vitamin E/d, injection type NA	Hamster	4 wk	Prevented neurologic disturbances (degenerative changes in granule cells, morphologic changes)	(253)
Vitamin E	25 ppm MeHgCl in diet	50-500 mg/kg vitamin E in diet	Japanese quail	15 d	Protected mortality; high level had no additional protection compared to low level	(84)
Vitamin E	10 ppm MeHgCl in diet	700 mg/kg all rac-α- tocopheryl acetate in diet	Japanese quail	21 d	Did not affect GSH—peroxidase activity; Hg did not alter lipid peroxidation	(141)
Vitamin E	32 ppm MeHgCl in diet	Vitamin E (not given), dose NA	Japanese quail	24 d	Prevented decrease in SGOT levels in severe Hg toxicity; did not affect SGPT levels	(207)
Vitamin E	1 mg MeHg/kg bw/d, 7 d, injection	60 mg vitamin E/kg/d s.c. injection 7 d, after Hg exposure	Mouse	14 d	Restored decrease in Na, K, Mg, Mn, Cu, Zn, Cr, and Ni for most organs toward normal, but recovery was not complete; Fe decrease in brain and spinal cord did not recover; kidney Fe decreased	(127)
Vitamin E	1 mg MeHgCl/kg bw/d, 7 d, s.c. injection	60 mg vitamin E/kg bw, s.c. injection for 7 d after 7-d MeHg treatment	Mouse	14 d	α - and β -Glycosidase activities recovered in brain, spinal cord; vitamin E showed maximum recovery of β -glycosidases in the brain compared to other vitamins; liver and kidney enzyme activities inhibition was enhanced	(103)
Vitamin E	0.4 μM MeHgCl	10^{-5} to 10^{-2} M vitamin E	In vitro mouse neuro	o- 3 d	Protected toxicity	(251)
Vitamin E	1 mg MeHgCl/kg bw/d, d 0–7, s.c. injection	60 mg vitamin E/kg bw/d, d 7–14, s.c. injection	Mouse	15 d	α -gal and β -gal activities recovered toward normal in brain and spinal cord; maximum recovery was in the brain; β -gal was further inhibited in kidney and testes; α -gal recovered in kidney but not in liver	(180)
					and testes	Continu

Table 8. Continued.

Nutrient	MeHg exposure	Nutrient dose	Animal model	Duration of experiment	Effects	Ref.
Vitamin E	10 ppm in drinking water	500 ppm vitamin E in diet with 0.1 ppm Se	Rat	Not given	Protected against toxicity (growth, neurologic symptoms, survival); suggests role of vitamin E is not just to spare Se	(254)
Vitamin E	10 ppm MeHg, in diet	100–500 mg D- α -tocopherol acetate, in diet	Japanese quail	18 wk	Protected survival; effect was dose dependent; protection extended from parents to offspring	(208)
Vitamin E	2 mg MeHg/kg bw, injection type NA	2 ppm α-tocopherol acetate in diet, injection type NA	Golden hamster	4 wk	Prevented toxic symptoms (neural damage, necrosis in cerebellum and calcarine cortex, ataxia, paralysis of hind limbs)	(143)
Vitamin E (γ-tocopherol)	15 ppm MeHgCl in diet	0.05% γ -tocopherol acetate in diet	Japanese quail	NA	Protected against Hg-induced mortality	(142)
Enhanced toxicity						
β-Carotene	10-40 mg MeHgCl/L in drinking water, 2 wk	1,000, 10,000, or 100,000 IU β-carotene/kg bw, in diet	Mouse	4 wk	Dietary excess of β-carotene enhanced MeHg-induced lipid peroxidation in brain, liver, and kidney	(146)
Vitamin A	10–15 ppm MeHgCl in drinking water	2,000–10,000 IU vitamin A/kg bw in diet	Rat	NA	Enhanced toxicity (growth, morbidity, mortality)	(148)
Vitamin C	20 μM MeHgOH, aqueous	0.4 mM ascorbate, aqueous	<i>In vitro</i> rat liver	10 min	Released Hg ⁰ and Hg ²⁺ ; Hg ²⁺ release was proportional to ascorbate concentration	(193)
Vitamin C	0.4 µM MeHgCl	20–120 μg ι-ascorbate/mL	In vitro mouse neuro blastoma cells	- 3 d	Enhanced toxicity	(251)
Other Effects						
Pantothenate	80 ng Hg/mL as MeHgCl in tank water	10 μg calcium pantothenate/ mL water	Goldfish	24 hr	No effect on MeHg uptake by fish	(250)
Vitamin A	MeHg, dose NA	Vitamin A, dose NA	In vitro tissue culture	NA	NA	(255)
Vitamin C	0.4 μM MeHgCl	20–120 μg ι-ascorbate/mL	<i>In vitro</i> rat glioma cells	3 d	No effect	(251)
Vitamin C	Nonoccupational envi- ronmental exposure	500 or 1,000 mg L-ascorbic acid/d for 3 months	Human	3 mo	No effect of vitamin C on Hg body burden as measured by hair and blood Hg	(44)
Vitamin C	80 ng Hg/mL as MeHgCl in water	10–1,000 times higher than Hg on a molar basis	Gold fish	24 hr	Reduction of MeHg toxicity was not consis- tent; possibly a role for vitamin C in the degradation of MeHg to Hg ²⁺ ; increased degradation increased mortality of fish	(256)
Vitamin E	0.4 µM MeHgCl	10^{-5} to 10^{-2} M vitamin E	In vitro mouse neuro blastoma cells	- 3 d	No effect	(251)
Vitamin E	13 ppm MeHgCl in drinking water	50 ppm vitamin E in diet compared to 275 ppm synthetic antioxidant DPPD	Rat	2 mo	DPPD decreased liver and brain Hg but increased kidney Hg compared to vitamin E	(252)
Vitamin E	20 ppm MeHgCl in drinking water	50 ppm vitamin E in diet compared to 275 ppm synthetic antioxidant DPPD	Rat (Se deficient)	7–9 wk	Vitamin E was not able to protect toxicity, but synthetic antioxidant DPPD did	(252)

DPPD, N,N'-Diphenyl-p-phenylenediamine.

Table 9. Effects of combined nutrients on the metabolism and distribution of MeHg.

Nutrient	MeHg exposure	Nutrient dose	Animal model	Duration of experiment	Effects	Ref
Protective effects Cysteine and methionine	0.05 mM MeHgCl, 0.5 mL intracarotid injection	0.1 mM L-Cys, 0.1 mmol L-Met, 0.5 mL, intra- carotid injection	Rat	15 s	Inhibited brain Hg uptake compared to cys alone	(82)
Cystine and selenium	15–25 ppm MeHgCl, in diet	0.4% L-cystine, 0.6 ppm selenite in diet, diet <i>ad</i> <i>libitum</i>	Rat	6–10 wk	Growth rate was similar to control diet; slightly decreased kidney Hg	(70)
Cystine and selenium	10 ppm MeHgCl, in diet	6 ppm selenite and 15 ppm cystine in diet	Japanese quail	16 wk	Prolonged survival time, improved egg production, improved fertility	(71)
Cystine and selenium	25 ppm MeHg, in diet	0.6 ppm selenite, 0.4% cystine of diet	Rat	10 wk	Prevented increase in SGPT and SGOT levels; effect was less than Se alone	(177)
Selenium and glutathione	0.3 μM MeHgCl	25 μM selenite and 5 mM GSH	In vitro	96 hr	Se and GSH decreased benzene-extractable Hg over time via cleavage of the Hg–C bond, but separately they did not; suggests reduc- tion of selenite is needed for the degradation of MeHg	(272)
Selenium and methionine	10 ppm MeHgCl in diet	6 ppm selenite and 15 ppm Met in diet	Japanese quail	16 wk	Prolonged survival time, improved egg production, improved fertility	(71)
Selenium and vitamin E	1.4×10^{-5} M MeHgCl	1×10^{-5} M selenite; 1.0×10^{-5} M DL- α -tocopherol acetate	<i>In vitro</i> rat cere- brallar tissues	4 d	Protective effects of Se and vitamin E are additive	(202)
Selenium in tuna fish	0.05–20 ppm MeHgOH	0.49 ppm Se from tuna	Japanese quail	6 wk	Decreased MeHg toxicity and prolonged sur- vival compared to corn, soya diet; decreased incoordination, mortality, growth inhibition	(183)
Selenium in tuna fish	20 ppm MeHgCl in diet	Tuna meal vs casein diet; natural Se in tuna or 0.5–1.5 ppm selenite	Rat	70 d	Se in tuna and selenite had same protective effect on growth; Se in tuna was half as effective as selenite in prevention of neurologic symptoms	(273)
Vitamin B complex	1 mg MeHgCl/kg bw/d, d 0–7, s.c. injection	20 mg vitamin B complex/ kg bw/d, s.c. injection, d 8–14	Mouse	15 d	α -gal and β -gal activities recovered toward normal in brain and spinal cord; maximum recovery of α -gal was in spinal cord; α -gal recovered in kidney and testes; β -gal recovered in kidney but not liver and testes	(180)
Vitamin B complex	1 mg MeHg/kg bw/d, injection type NA, 7 d	20 mg vitamin B/kg bw/d complex, 7 days after Hg exposure, s.c. injection	Mouse	14 d	Mobilized Hg from all tissues; decrease in Na, K, Mg, Mn, Cu, Zn, Cr, and Ni for most organs was restored toward normal, but recovery was not complete; recovery of decreased Fe in brain and spinal cord but not kidney	(127)
Vitamin B complex	1 mg MeHgCl/kg bw/d, 7 d, s.c. injection	20 mg/kg bw, s.c. injection for 7 d after the 7-d MeHg treatment	Mouse	14 d	α - and β -Glycosidases activities recovered in brain, spinal cord; B-complex showed maximum recovery of β -glycosidase in the spinal cord; inhibition of liver and kidney enzyme activities was enhanced	(103)
Vitamin E and selenium	30 ppm MeHgCl in diet	0.05–0.6 ppm selenite and 10–500 IU α-tocopherol, in diet	Japanese quail	28–34 d	Vitamin E added to the protective effect of Se on mortality and clinical symptoms; vitamin E had a greater protective effect at low levels of Se; improved growth rate with larger effect attributed to vitamin E	(274)
Vitamin E and selenium	10–30 ppm MeHgCl in drinking water	50–500 ppm vitamin E diet and 0.1 ppm Se in diet for 8 wk	Rat	17–48 wk	Both Se and vitamin E protected signs of toxicity, growth and survival	(252)
Vitamin E, selenium	30 ppm MeHgCl in diet	$500-1,000 \text{ IU} \alpha\text{-tocopherol}$ with $0.05-0.6 \text{ ppm}$ selenite, in diet	Japanese quail	28–34 d	Protected toxicity (altered hematocrit, decreased bond calcification, survival rate); vitamin E provided little added protection at high levels Se	(204)
Vitamin E, selenium	10 ppm MeHg in diet	100–500 mg D-α- tocopherol acetate; 0.6 ppm selenite,in diet	Japanese quail	18 wk	Combined treatment offered more protection than either alone	(208)
Vitamins E and A	10—15 ppm MeHgCl in drinking water	50, 500 ppm vitamin E, 2,000–10,000 IU vitamin A/kg, in diet	Rats	NA	Protected toxicity at high vitamin E concentrations but not at low vitamin E concentrations (growth, morbidity, mortality)	(148)
Enhanced toxicity Methionine and protein	20 µmol Hg as MeHg/kg bw, oral administration	1% Met in diet to 7.5% or24.8% protein diet	Rat	NA	Met increased Hg in brain with low protein but not high protein diet; Met increased Hg in liver, plasma and decreased Hg in kidney	(257)

NUTRITION AND METHYL MERCURY EXPOSURE

Table 9. Continued.

Nutrient	MeHg exposure	Nutrient dose	Animal model	Duration of experiment	Effects	Ref.
Vitamin C and copper	100 nM MeHg	10 μM copper sulfate with 100 μM ι-ascorbate	In vitro (rat brain cells)	10 d	Increased oxygen reactive substances, and decreased activities of antioxidant enzymes, when effects were not observed with Hg alone	(275)
Other effects Selenium- L-methionine	1 nmol MeHgCl/mL, 5 wk, during and after pregnancy, in drinking water	3 µg Se-Met/mL in drinking water (diet already contains 0.9 ppm Se)	Mouse	9–10 wk	Percent Hg deposited in offspring <i>in utero</i> and during lactation was not influenced by Se–Met	(276)

Table 10. Evidence for the effect of nutrients on the excretion of MeHg.

Nutrient	MeHg exposure	Nutrient dose	Animal model	Duration of experiment	Effects	Ref.
Protective effects						
Chemically defined liquid diet	0.46 mg MeHgCl/kg bw, single dose p.o. on d 0	116 EC GIBCO diet ad libitum vs pellet rodent diet	Mouse	14 d	Increased elimination of whole-body Hg compared to rodent pellet diet; increased excretion of inorganic Hg	(85)
Cysteine	4 mmol MeHgCl/kg bw, single i.v. injection	8 mmol Cys/kg bw, single i.v. injection premixed with Hg	Rat	4 hr	Promoted biliary excretion of MeHg	(74)
Cysteine	4 mmol MeHgCl/kg bw, single i.v. injection	3 mmol cysteine/kg bw in 2 mL of water	Rat	300 min	Cys temporarily decreased biliary excretion of MeHg but then increased it as biliary excretion of Cys decreased	(301)
Cystine and selenite	15–25 ppm MeHgCl	0.4% L-cystine, 0.6 ppm selenite, in diet, <i>ad libitum</i>	Rat	6–10 wk	Reduced Hg toxicity; decreased excretion of Hg slightly and increased retention	(70)
Fish protein	15–25 ppm MeHgCl in diet, <i>ad libitum</i> vs casein diet	10–20% fish protein	Rat	6–10 wk	Increased urinary and fecal excretion compared to diets supplemented with selenite or cystine or the casein diet; slightly increased Hg in muscle	(70)
Glutathione	4 mmol MeHgCl/kg bw, single i.v. injection	8 mmol cysteine/kg bw, single i.v. injection premixed with Hg	Rat	4 hr	Promoted biliary excretion of MeHg	(74)
Lipoic acid	NA	NA	NA	NA	Protected Hg toxicity	(140)
Methionine	20 mmol Hg as MeHg/ kg bw	1-7.5% or 24.8% protein diet	Rat		Hg excretion in urine was increased but not fecal excretion	(257)
Selenium	6.5–13 ppm MeHgCl in diet	0.5–4 ppm selenite in diet	Chick	12 d	Increased Hg concentration in ileum; increased Hg excretion	(302)
Sulfur amino acids in low protein diet	20 mmol MeHg/kg, orally (24 hr before death)	7.5% protein diet vs 24.8% protein diet plus 0.03% cysteine and 1.1% methionine, 5 d	Mouse	5 d	Increased urinary Hg over normal protein diet	(69)
Synthetic liquid diet (high protein, low fat)	0.6 mg MeHgCl/kg bw (single p.o. dose)	Synthetic diet (high protein, low fat) <i>ad libitum</i>	Mouse	2 wk	Increased whole-body elimination of Hg compared to rodent pellet diet; antibiotic treatment reduced fecal Hg to zero and suppressed urinary Hg excretion	(88)
Wheatbran	5.0 mg Hg as MeHgCl/kg bw, single p.o. dose)	5, 15, 30% wheatbran in diet compared to fiber- free diet	Mouse	104 d	Increased rate of Hg elimination by 43%	(78)
Enhanced toxicity						
Lipoic acid	10 mmol/kg bw, i.v. injection	37.5–300 µmol lipoic acid /kg, i.v. injection	Rat	3 hr	Decreased biliary excretion of MeHg but increased GSH and inorganic Hg excretion	(139)
Low- protein diet	20 mmol Hg as MeHg/ kg bw, orally, on d 0	7.5% vs 24.8% protein diet	Mouse	7 d	Decreased urine Hg 3.7 times; did not affect fecal level	(87)
Low-protein diet	20 mmol Hg as MeHg/ kg,bw orally, 24 hr before death	7.5 vs 24.8% protein diet, 5 d	Mouse	5 d	Decreased Hg in urine	(69)
Methyl iodide	MeHg, dose NA	0.5 mmol methyl iodide/ kg bw, single i.v. injection	Rat	300 min	Decreased biliary excretion of MeHg	(301)
Selenium	50 mmol Hg as MeHgCl/kg bw, p.o.	50 mmol selenite/kg bw, p.o.	Guinea pigs	13 d	Decreased fecal excretion; fecal excretion was predominant excretion path	(199)
Other effects		·			·	
Cellulose	5.0 mg MeHgCl/kg bw, single p.o. dose	5% cellulose in diet vs fiber-free diet	Mouse	104 d	Did not affect Hg elimination	(78)
Cystine	15–25 ppm MeHgCl, in diet <i>ad libitum</i>	0.4% L-cystine, in diet, ad libitum	Rat	6–10 wk	Does not exert protective effect by increasing excretion	(70)
Ethanol	2.5 mg MeHgCl/kg bw, in water	5.0 mL/kg bw of 25% ethanol	Rat	7 wk	No effect on feces and urine levels of Hg	(79)
Milk	0.46 mg MeHgCl/kg (single dose p.o. on d 0)	Evaporated whole milk diet ad libitum vs pellet rodent diet	Mouse	14 d	Decreased elimination of whole-body Hg compared to rodent pellet diet; fecal excre- tion was less than pellet diet	(85)
Pectin	5.0 mg Hg as MeHgCl/kg bw, single p.o. dose	5% pectin in diet com- pared to fiber free diet	Mouse	104 d	No effect on Hg elimination	(78)
Selenium	15–25 ppm MeHgCl in diet	0.6 ppm selenite, in diet, ad libitum	Rat	6–10 wk	Reduced MeHg toxicity but did not accelerate elimination of Hg in urine or feces	(70)
Selenium- L-methionine	1 nmol MeHgCl/mL, 5 wk, during and after pregnancy, in drinking water (essen- tially nontoxic level)	3 mg Se–Met/mL in drinking water (diet already contains 0.9 ppm Se)	Mouse	9–10 wk	Rate of Hg excretion after birth was not affected by Se–Met	(97, 276)